

Lessons From the Autoregressive/Nonautoregressive Battle in Speech Synthesis

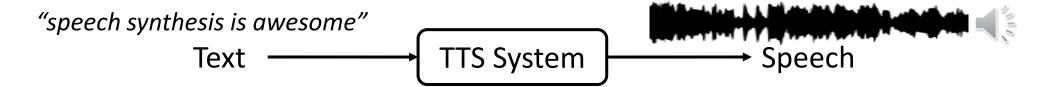
Xu Tan Microsoft Research Asia xuta@microsoft.com

About Me

- Xu Tan (谭旭)
 - Principal Researcher and Research Manager @ Microsoft Research Asia
- Research interests
 - Speech: FastSpeech 1/2, NaturalSpeech 1/2, UniAudio (<u>https://speechresearch.github.io/</u>)
 - Music: Muzic project (<u>https://github.com/microsoft/muzic</u>)
 - Avatar: GAIA project (<u>https://microsoft.github.io/GAIA/</u>)
 - Large language models
- Homepage
 - <u>https://www.microsoft.com/en-us/research/people/xuta/</u>
 - <u>https://scholar.google.com/citations?user=tob-U1oAAAAJ</u>

Text-to-Speech Synthesis

• Text-to-speech (TTS): generate intelligible and natural speech from text

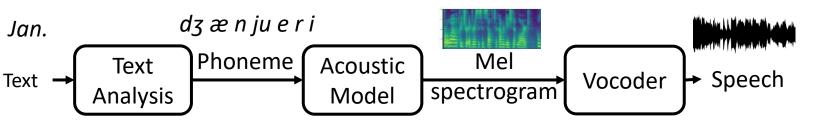


- Enabling machine to speak is an important part of AI
 - TTS (speaking) is as important as ASR (listening), NLU (reading), NLG (writing)
 - Human beings tried to build TTS systems dating back to the 12th century

					Neural TTS WaveNet (Google DeepMind)
1950s	1970s	199	90s	2010s	2016
Articulatory Synthesis	Formant Synthesis	Concatenative Synthesis	Statistical Parametric Synthesis	Neural Speech Synthesis	(Deep) Neural Speech Synthesis

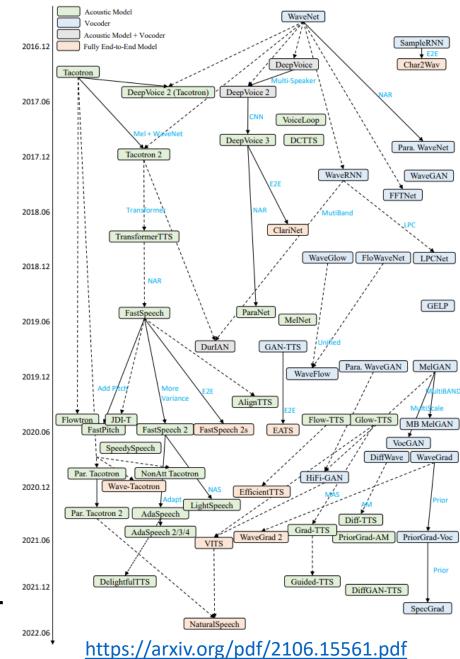
Typical Neural TTS Pipeline

• Text analysis, acoustic model, and vocoder



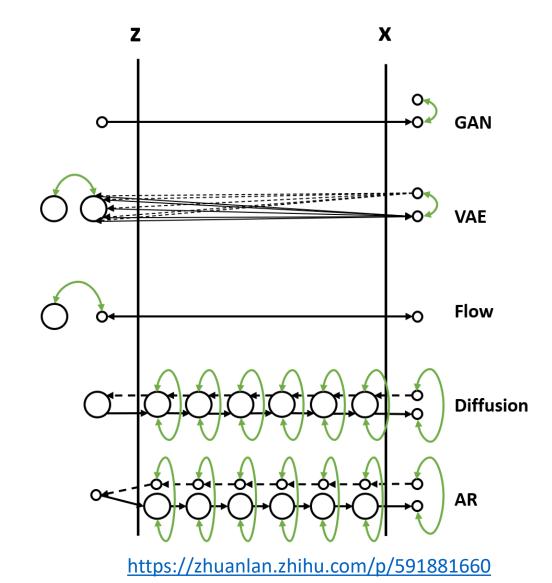
- Text analysis: text \rightarrow linguistic features
- Acoustic model: linguistic features \rightarrow acoustic features
- Vocoder: acoustic features \rightarrow speech

- Linguistic features: phoneme, prosody features
- Acoustic features: mel-spectrogram, discrete token, latent vector



AR vs NAR in Neural TTS

- Generative models can be classified in AR/NAR
 - AR: Autoregressive
 - NAR: GAN, VAE, Flow, Diffusion (Flow Matching)
- Difference between AR and NAR (Diffusion)
 - How to factorize data?
 - AR: along time axis
 - NAR: along noise level
 - How to determine alignment/duration?
 - AR: implicitly
 - NAR: explicitly
 - Iteration steps
 - AR: sequence length
 - NAR: flexible



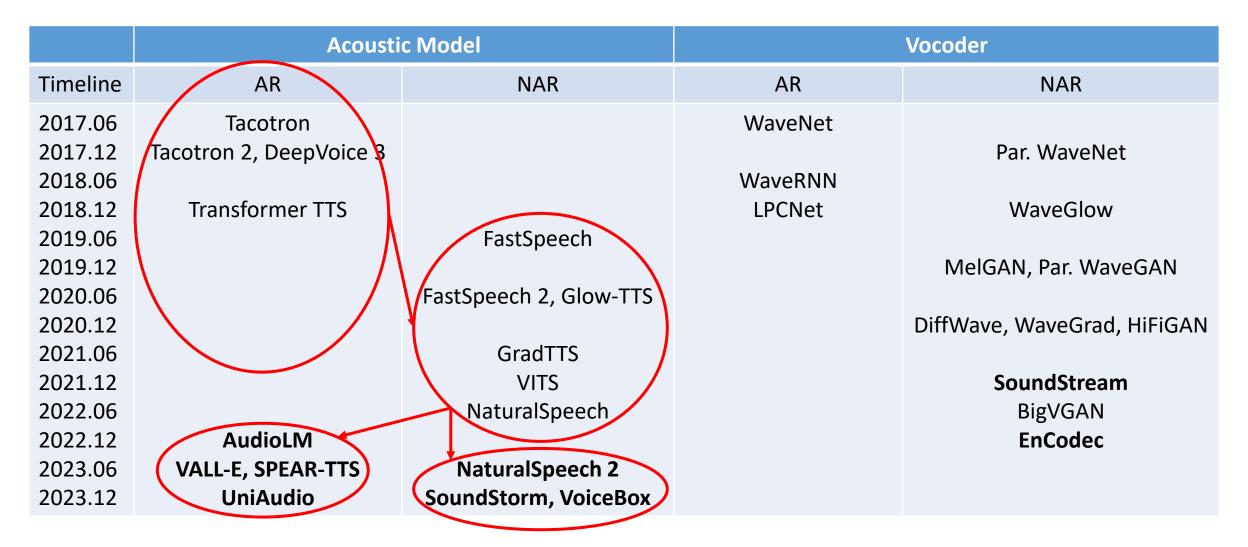
The Battle Between AR and NAR

	Acousti	c Model	Vocoder			
Timeline	AR	NAR	AR	NAR		
2017.06	Tacotron		WaveNet			
2017.12	Tacotron 2, DeepVoice 3			Par. WaveNet		
2018.06			WaveRNN			
2018.12	Transformer TTS		LPCNet	WaveGlow		
2019.06		FastSpeech				
2019.12				MelGAN, Par. WaveGAN		
2020.06		FastSpeech 2, Glow-TTS				
2020.12				DiffWave, WaveGrad, HiFiGAN		
2021.06		GradTTS				
2021.12		VITS		SoundStream		
2022.06		NaturalSpeech		BigVGAN		
2022.12	AudioLM			EnCodec		
2023.06	VALL-E, SPEAR-TTS	NaturalSpeech 2				
2023.12	UniAudio	SoundStorm, VoiceBox				

The Battle Between AR and NAR

	Acousti	c Model	Vocoder				
Timeline	AR	NAR	AR	NAR			
2017.06 2017.12 2018.06 2018.12	Tacotron Tacotron 2, DeepVoice 3 Transformer TTS		WaveNet WaveRNN LPCNet	Par. WaveNet WaveGlow			
2019.06 2019.12 2020.06		FastSpeech FastSpeech 2, Glow-TTS		MelGAN, Par. WaveGAN			
2020.00 2020.12 2021.06		GradTTS		DiffWave, WaveGrad, HiFiGAN			
2021.12 2022.06		VITS NaturalSpeech		SoundStream BigVGAN			
2022.12 2023.06 2023.12	AudioLM VALL-E, SPEAR-TTS UniAudio	NaturalSpeech 2 SoundStorm, VoiceBox		EnCodec			

The Battle Between AR and NAR



Trends of the AR/NAR Battle

- Trend 1: NAR dominates Vocoder (Codec)
- Trend 2: NAR shows advantage in acoustic model before the LLM era
- Trend 3: LLMs revive the AR/NAR battle

Explanation of Trend 1&2

- Target-Target (T-T) vs Target-Source (T-S) dependency
 - T-T: dependency among target tokens
 - T-S: dependency on source tokens
- Difficulty of AR/NAR
 - If T-T > T-S \rightarrow more information is needed from target tokens \rightarrow NAR is more difficult
 - Vice versa
- Connection to multi-modality
 - Multi-modality: P(x|y) is not single-modal, not one-one mapping
 - e.g., "Thank You" \rightarrow "Vielen Dank" or "Danke"
 - If T-S dominates, P(x|y) is more single-modal, a source token will have one definite mapping
 - If T-T dominates, P(x|y) is multi-modal, a source token will have multiple mappings

T-S Dependency

Type of T-S Dependency	Task	Alignment
Target has correspondence with source	Speech Enhancement	Inherent alignment
	Voice Conversion	
	Text to Speech	Duration/Attention alignment
	Singing Voice Synthesis	MusicScore alignment
	Speech Recognition	CTC/Transducer/Attention alignment
Target is a minor change of source	Text Error Correction	Locate the minor changes
	Text Style Transfer	Content not changes but style changes
Target is a translation of source	Machine Translation	Attention alignment
Target is implicitly correlated to source	Dialogue Generation	Semantic alignment
	Image Generation	Semantic alignment

T-T Dependency

Type of T-T Dependency	Task	Description				
Text	Machine Translation					
	Text Summarization	Discrete tokens in languages are contextualized , explained				
	Text Error Correction	mutually.				
	Text Style Transfer	Strong mutual dependency				
	Dialogue Generation					
	Speech Recognition					
Speech and Image	Text to Speech	For continuous signal like speech/sound/image, they				
	Singing Voice Synthesis	depends on the concept, like speech frames depend on a word, image pixel depend on a class.				
	Image Generation	Weaker mutual dependency				

T-T/T-S Dependency and NAR Difficulty

Modality	Task	Source	Target	T-T vs T-S	Difficulty of NAR
Text	Machine Translation	Source language	Target language	~	****
Generation	Text Summarization	marization Long text		~	****
	Dialogue Generation	Dialogue	Response	>	****
	Text Error Correction	Error Text	Correct Text	<	***
	Text Style Transfer	Source Text	Target text	<	***
	Speech Recognition Speech		Text	\leq	***
Speech	Text to Speech	Text	Speech	<	***
Generation	Singing Voice Synthesis	Score	Singing Voice	<	**
	Voice Conversion	Source Voice	Target Voice	«	*
	Speech Enhancement	Noisy Speech	Clean Speech	«	*
Image	Pixel Generation	Class ID	Image Pixel	-	*
Generation	Discrete Token Generation		Image Token	-	**

Explanation of Trend 1&2

- Trend 1: NAR dominates Vocoder (Codec)
- Trend 2: NAR shows advantage in acoustic model before the LLM era

	TTS (Overall)	Vocoder	Acoustic Model
Target	Signal Not Symbol	Continuous Signal (Perceptual)	Content/Prosody/Timbre/Acoustic (Semantic)
T-T Dependency	Weaker Than Text	Short-term, Low-level, Local	Long-term, High-level, Global
T-S Dependency	1-1 Correspondence	Frame-level alignment	Duration/Attention Alignment
NAR Difficulty	Easier than ASR/NMT	Very Easy, NAR Dominates	Easy, NAR Shows Advantage Before LLM Era

Lessons Learned From Trend 1&2

- Lesson 1: To generate low-level perceptual details, NAR is preferred. If T-S has strong dependency, NAR is the best choice.
 - Audio (speech/music/sound): vocoder, codec
 - Image: VAE/VQ-VAE/VQ-GAN
 - Image/audio super-resolution/enhancement
- Lesson 2: To generate high-level semantic information, AR is preferred. If T-S has no strong correspondence, AR is the best choice.
 - LLMs for text generation
 - Non-autoregressive NMT is a great lesson
- Lesson 3: To generate mid-level semantic/acoustic information, NAR has advantages, if T-S has strong dependency, and speed/robustness are considered
 - NAR-based acoustic model in TTS, speed/robustness are better than AR-based
 - e.g., FastSpeech 2 vs Transformer TTS

Trend: LLMs Revive the AR/NAR Battle

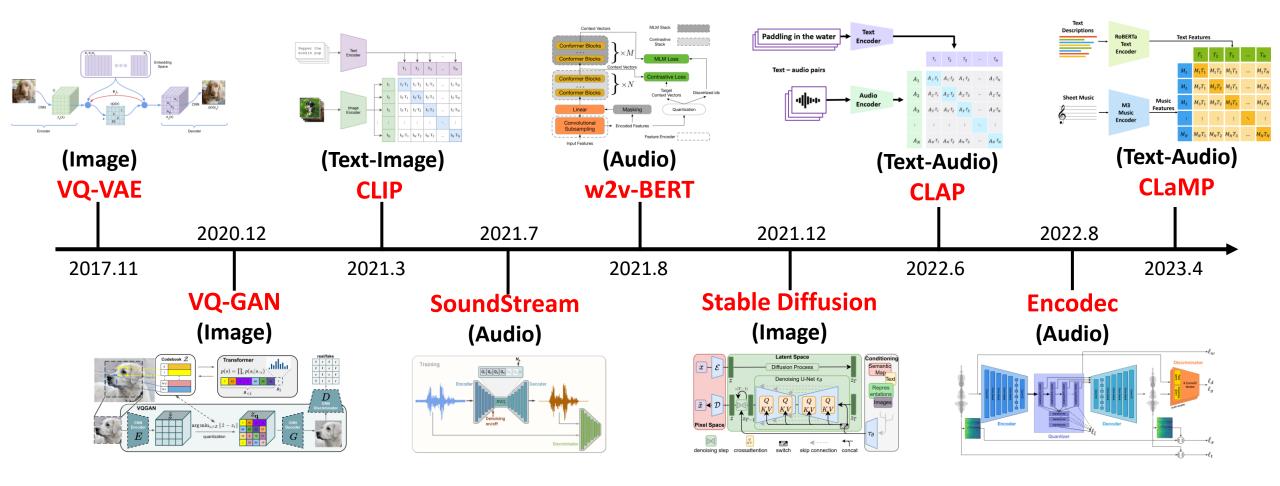
	Acousti	c Model	Vocoder			
Timeline	AR	NAR	AR	NAR		
2017.06 2017.12 2018.06	Tacotron Tacotron 2, DeepVoice 3		WaveNet WaveRNN	Par. WaveNet		
2018.12	Transformer TTS		LPCNet	WaveGlow		
2019.06 2019.12		FastSpeech		MelGAN, Par. WaveGAN		
2020.06 2020.12		FastSpeech 2, Glow-TTS		DiffWave, WaveGrad, HiFiGAN		
2021.06 2021.12		GradTTS VITS		SoundStream		
2022.06		NaturalSpeech		BigVGAN		
2022.12 2023.06 2023.12	AudioLM VALL-E, SPEAR-TTS UniAudio	NaturalSpeech 2 SoundStorm, VoiceBox		EnCodec		

Lesson 4: The Goal/Paradigm of TTS Has Shifted In the New Era

- Original goal: synthesize intelligible and natural speech
 - Intelligible: achieved
 - Natural: quality on limited styles/speakers/languages, achieved
- Goal now: natural and human-like
 - Diverse styles/speakers/languages
 - Huge effort to cover so many varieties
 - Prosody/emotion/style: unlimited variety
 - Speaker/timbre: **billions** of speakers in the world
 - Content/language: thousands of languages
- The paradigm to achieve the new goal
 - Pre-train on large-scale/diverse data
 - Fine-tune on specific style/speaker/language
 - Zero-shot/in-context learning on novel styles/speakers/languages

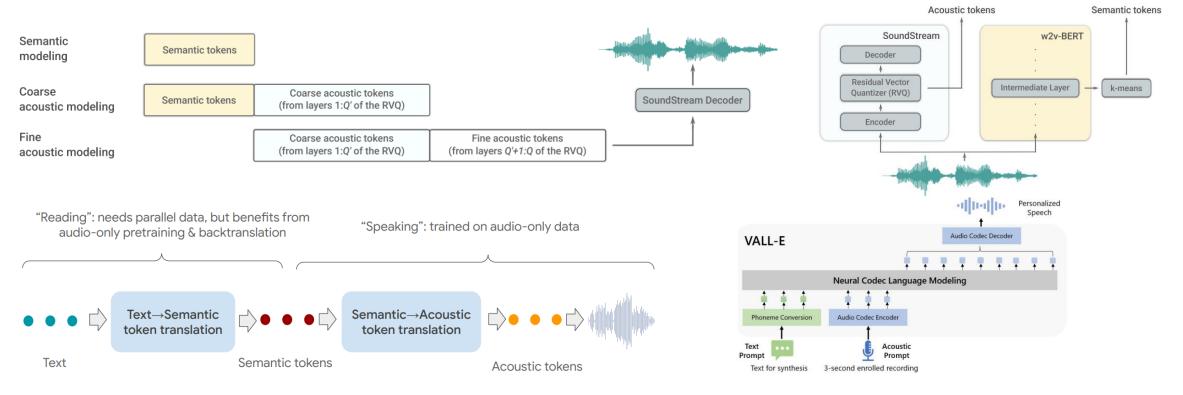
Recap LLM-based TTS

• Neural data representation/tokenization



Recap LLM-based TTS

- Transformer and decoder-only based LLMs
 - AudioLM: 1) Semantic, 2) Semantic→Coarse Acoustic, 3) Coarse Acoustic→ Fine Acoustic
 - **SPEAR-TTS**: 1) Text → Semantic Tokens, 2) Semantic → Acoustic
 - VALL-E: 1) Text→Acoustic 1st, 2) Acoustic 1st→Acoustic 2nd -8th (NAR)



Lesson 5: Data/Model Scaling (Out)Weigh Domain Knowledge

- With LLMs and data/model scaling, AR show competitiveness against with NAR
 - Prior domain knowledge (duration alignment) show advantages before the LLM era
 - Simple data/modeling scaling (hundreds of thousands or millions of hours) weigh or outweigh
 - Inspirations from other areas (i.e., LLMs) can bring new variables in the battle that was
 originally going to be lost
- Perspective
 - Practitioners in TTS: research or product
 - Practitioners in language/speech, audio domain, multimodality

Lesson 6: The AR/NAR Battle Is Not A Zero-Sum Game

	AR	NAR
Models	 AudioLM VALL-E SPEAR-TTS UniAudio 	 NaturalSpeech 2 SoundStorm Mega-TTS VoiceBox
Pros	 Stand on the shoulder of LLMs (e.g., in-context learning, scalability) Diverse/expressive (sampling) 	 Stable/Robust Fast inference Control/Disentangle
Cons	 Not stable/robust (severe in 0-shot) Slow inference Long sequence (complex pipeline) 	 Over-smoothness (fidelity, prosody) and less diversity Complicated alignment process

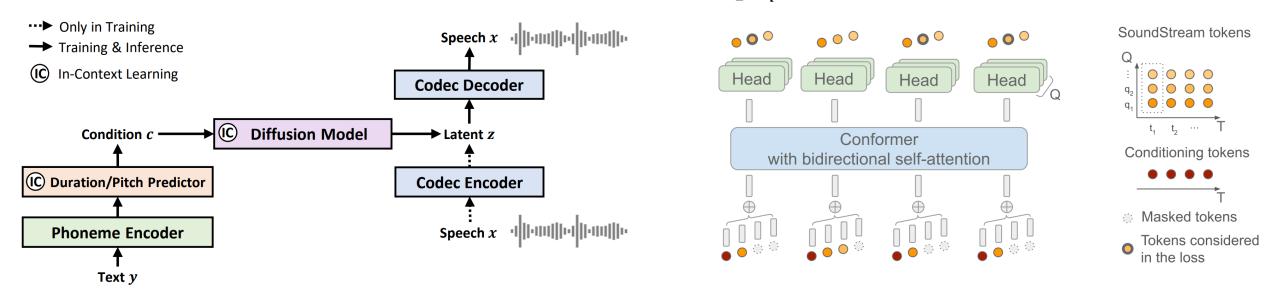
Difference	AR	NAR	Impact
Data Factorization	Along time axis	Along noise level	
Alignment/duration	Implicitly	Explicitly	Stable/Robust, Flexible
Iteration steps	Sequence length	Flexible	Fast

Lesson 6: The AR/NAR Battle Is Not A Zero-Sum Game

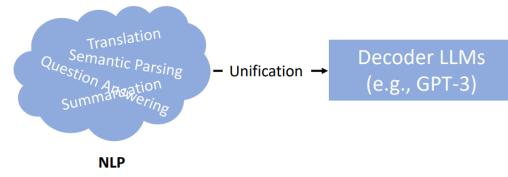
- AR/LLM-based and NAR-based TTS models have different application scenarios
 - AR-based has better diversity, prosody, expressiveness, and flexibility than NAR model
 - NAR is better in **speed and robustness**
 - After single-speaker finetuning, **AR models also has few bad cases**, although loses zero-shot capabilities
 - NAR is better in **disentanglement and control** (timbre, prosody, etc)
 - Combine AR and NAR: **semantic-level AR + perceptual-level NAR**

Lesson 7: Tokenization/Sampling Is Critical for Diversity/Expressiveness

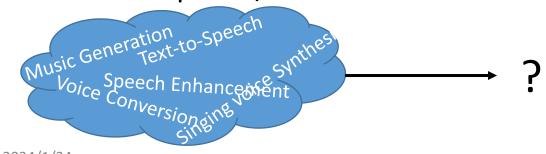
- Tokenization: softmax and cross-entropy
 - Classification to model diverse distribution and support sampling, instead of regression (GAN, VAE, Flow, Diffusion)
 - Not only benefit for AR but also NAR (NAR can model discrete tokens)
 - e.g., NaturalSpeech 2 (latent diffusion model with L_{ce_rvq} loss) and SoundStorm



- The advantage of LLMs is **scalability and flexibility**, instead of perfect performance on every single task
 - Do not care winning or losing battles but care the war!
- A lesson from NLP



How about speech/audio?



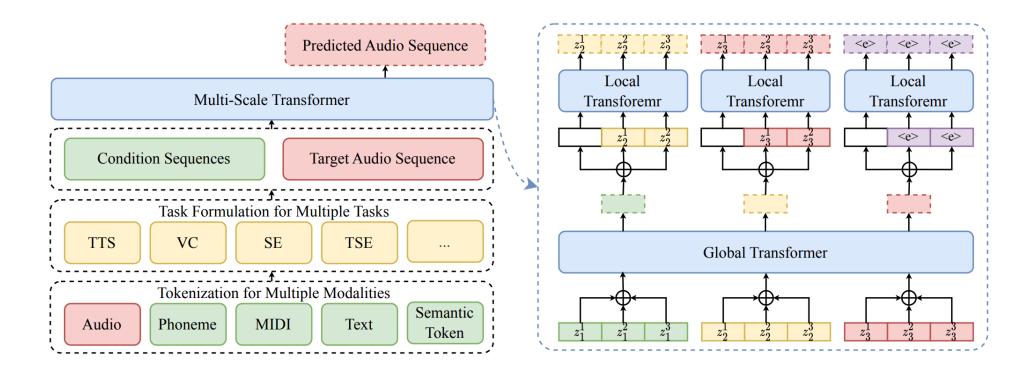
Summarization is (Almost) Dead

Xiao Pu*, Mingqi Gao*, Xiaojun Wan Wangxuan Institute of Computer Technology, Peking University puxiao@stu.pku.edu.cn {gaomingqi, wanxiaojun}@pku.edu.cn

- UniAudio: Unify all audio (speech, singing, music, sound) generation tasks in a single LLM
 - Task formulation: concatenate condition-target as a single sequence
 - e.g., <start> <audio_task> <text_start> text_sequence <text_end> <audio_start> audio_sequence <audio_end> <end>

Task	Conditions	Audio Target
Text-to-Speech (TTS) (Wang et al., 2023a)	phoneme, speaker prompt	speech
Voice Conversion (VC) * (Wang et al., 2023e)	semantic token, speaker prompt	speech
Speech Enhancement (SE) * (Wang et al., 2023b)	noisy speech	speech
Target Speech Extraction (TSE) * (Wang et al., 2018)	mixed speech, speaker prompt	speech
Singing Voice Synthesis (SVS) (Liu et al., 2022)	phoneme (with duration), speaker prompt, MIDI	singing
Text-to-Sound (Sound) (Yang et al., 2023c)	textual description	sounds
Text-to-Music (Music) (Agostinelli et al., 2023)	textual description	music
Audio Edit (A-Edit) * (Wang et al., 2023d)	textual description, original sounds	sounds
Speech dereverberation (SD) \clubsuit (Wu et al., 2016)	reverberant speech	speech
Instruct TTS (I-TTS) \diamond (Guo et al., 2023)	phoneme, textual instruction	speech
Speech Edit (S-Edit) [◊] (Tae et al., 2021)	phoneme (with duration), original speech	speech

 UniAudio: Unify all audio (speech, singing, music, sound) generation tasks in a single LLM



• UniAudio: Unify all audio (speech, singing, music, sound) generation tasks in a single LLM

Model	TTS	VC	SE	TSE	SVS	Sound	Music	A-Edit	SD	I-TTS	S-Edit
YourTTS (Casanova et al., 2022)	1	1	X	×	×	X	X	×	X	×	X
VALL-E (Wang et al., 2023a)	1	X	X	×	×	×	×	×	×	×	×
MusicLM (Wang et al., 2023a)	X	×	X	×	×	×	1	×	X	×	×
SPEARTTS (Kharitonov et al., 2023)	1	1	X	×	×	×	X	×	×	×	X
NaturalSpeech2 (Shen et al., 2023)	1	1	1	×	1	X	×	×	×	×	×
Make-A-Voice (Huang et al., 2023b)	1	1	X	×	1	X	×	×	×	×	X
Maga-TTS (Jiang et al., 2023)	1	×	X	×	X	X	×	×	×	×	1
VoiceBox (Le et al., 2023)	1	X	1	×	×	×	×	×	×	×	1
AudioLDM2 (Liu et al., 2023b)	1	×	X	×	×	1	1	×	×	×	X
SpeechX (Wang et al., 2023c)	1	×	1	1	X	×	×	×	×	×	1
UniAudio (ours)	1	1	1	1	1	1	1	1	1	1	1

- The advantage of LLMs is **scalability and flexibility**, instead of perfect performance on every single task
 - Do not care winning or losing battles but care the war!
 - UniAudio-like work will dominate the whole audio tasks, not merely TTS or generation
 - Universal task support (speech/singing/music/sound, understanding/generation), next word prediction, scaling law, in-context learning, prompting

Lessons Learned

- Lesson 1: To generate low-level perceptual detail, NAR is preferred. If T-S has strong dependency, NAR is the best choice
- Lesson 2: To generate high-level semantic information, AR is preferred. If T-S has no strong dependency, AR is the best choice
- Lesson 3: To generate mid-level semantic/acoustic information, NAR has advantages, if T-S has strong dependency, and speed/robustness are considered
- Lesson 4: The goal/paradigm of TTS has shifted in the new era
- Lesson 5: Data/model scaling (out)weigh domain knowledge
- Lesson 6: The AR/NAR battle is not a zero-sum game
- Lesson 7: Tokenization/sampling is critical for diversity/expressiveness
- Lesson 8: Think outside the box: the real competition may not come from within the field

Tips From These Lessons

- Tip 1: Choose AR/NAR according to your scenarios (more signal/perceptual or semantic/contextual, fast inference, streaming, high-quality single speaker, zeroshot, stableness, scalability?)
- **Tip 2**: **Exploit NAR**, e.g., tokenization/sampling, disentanglement/control, stable zero-shot
- Tip 3: Explore AR, beyond speech synthesis, ChatGPT moment in audio domain
- Tip 4: Scale data/model/task, explore the unknow

Thanks

Artificial Intelligence: Foundations, Theory, and Algorithms

A book on "Neural Text-to-Speech Synthesis" published by Springer!

https://link.springer.com/book/9789819908264

Neural Text-to-Speech Synthesis

Xu Tan

2024/1/24

Thank You!

https://www.microsoft.com/en-us/research/people/xuta/ https://speechresearch.github.io/ tan-xu.github.io